

High-throughput phenotypic screening and target deconvolution of novel oncogenic YAP/TAZ signaling pathway inhibitors

A phenotypic high-throughput screen of 3.8 million compounds was conducted using a cellular YAP1/TAZ-dependent luciferase reporter identified in vitro lead compound 1 as a potent inhibitor of YAP1/TAZ activation. Target deconvolution studies, including cellular thermal shift assays and CRISPR/Cas9-KO screens, identified PGGT1B, a subunit of the geranylgeranyltransferase-I (GGTase-I) complex, as the direct target of YAP1/TAZ pathway inhibitors. GGTase-I inhibitors blocked the activation of Rho-GTPases at the cell membrane, leading to subsequent inactivation of YAP1/TAZ.

Phenotypic screen to identify novel YAP1/TAZ pathway inhibitors

Target deconvolution of in vitro lead compound 1

Mode of action confirmation

downregulates YAP1/TAZ target gene expression

- Novel YAP1/TAZ pathway inhibitors identified by cellular pathway high-throughput screen
- Target deconvolution identified GGTase-I as the direct target of the novel YAP1/TAZ pathway inhibitors
- GGTase-I inhibitors block Rho-GTPase signaling and downstream YAP1/TAZ

CETSA®-MS:

PGGT1B identified as the protein with the highest shift in melting temperature upon incubation of MDA-MB-231 cell lysates with in vitro lead compound 1 (experiments carried out using CETSA® at Pelago Bioscience, requiring a targetspecific license from Pelago)

Thermal Shift Assay:

Direct binding of PGGT1B by in vitro lead compound 1 confirmed using TSA with recombinant PGGT1B

Biochemical assay:

In vitro lead compound 1 inhibits the enzymatic activity of purified human GGTase-I

Pooled CRISPR/Cas9 screen:

Knock-down of PGGT1B significantly sensitizes cells to treatment with in vitro lead compound 1

Mode of Action

