Genome-wide CRISPR/Cas9 screen for the identification of novel YAP1/TAZ modulators

INTRODUCTION

 organs, ampification on tissul s.specitic p
and regenenation and cell poplifeation.
(1) In cancer, YAPITTAZ are treuwently aberantly activated through Hippo

 sionaling.

 TEAD Promoter bindindos sities
-2 We pertormed a pooled degomene wide CRISPR/Cas9 knockout screen to
 Ihe novel candidale YAPITTAZ modulators will aid
undeststanding o Y YAPITAZ biology in heath and disease
METHODS

E MDA-MB-231 breast cancer cells were modified to express a YAP1/TAZ dependent TEAD-uciererase reporter tuat can be detected using a newly
developed flow citometr-ased assay (Fig $1 A, B$) Fixed and permeabiized cells were stained for firefly lucifierase expression using an anti-iriefly Luciferase antibody (EPR17790, Abcam) followed by staining with
goat anti-rabbit Alexa Fluor 488 secondary antiody (Thermo). Luciferase activity was measured using the Dual-Gio Luciferase Assay System activity was
(Promega).
Treatment of cells with Cytochalasin D caused dose-dependent inactivation of the lucierase reporter (Fiig. 1C). This was detected at comparable
sensitivity by both luciferase activity assay and flow cytometry, indicating hat flow cytometry-based detection of luciferase protein expression is viable method to quantify lucierase activity (Fig. 1 C$)$.

TK fomotor Reonlla
$-\frac{10}{}$ To detect YAP1TAZ translocation, cells were fixed, permeabilized and stained with anti-YAP1/TAZ antiody (Santa Cruz, sc-101 199) and Alexa
Fluor® 488 Goat Anti-Mouse Ig (Jackson ImmunoResearch, 115-546-062).

Pooled whole genome CRISPR/Cas9 screening strategy
MDA-MBA-231 cells were transduced with a three-module whole genome 150 k single guide RNA
(sgRNA) CRISPR Knockout lentiviral library (Cellecta) targeting the entire human genome at a
\Rightarrow Atter 14 days of knockout generation, cells were harvested, stained for luciererase expression and
 sorting. Genomic
integratee sggninas.

Fig.2: Strategy for pooled whole genome CRISPR/Cas9 YAP1/TAZ pathway screen
Whole genome CRISPR/Cas9 screen identifies known and novel YAP1/TAZ regulators
 YAPOAAZ acivity, incluaing Previousy
RHOA, RAC1 and TEAD1 (Fig. 3A, B).

RESULTS

Validation of whole genome CRISPR/Cas9 screen hit results

- YAP1TAZ celluar localization, TEAD-Luciferase activity and endogenous YAP1/TAZ target gene measurements of individual CRISPR/Cas9 knock-outs or siinNAs verified YAP1/TAZ modulation of

In addition to previously known genes, additional genes with functions in actin cytoskel
signaling, Integrin signaling, ER stress and signaling, Integrin signaling, ER stress and
protein transport, amongst others, were identified as
\Rightarrow Knock-out or knock-down of MARK2, a member of the Par- 1 family of serinetthreonine protein kinases important for regulation of cell polarity consistently inhibited YAP1TAZ activity in all assays tested. The highly
related MARK4 protein has previously been shown to be an activator of YAP1TTAZ. Knock-out or knock-down of breast cancer tumor suppressors PTPN12 (Protein Tyrosine Phosohatase Now Knock-out or knock-down of breast cancer tumor suppressors PTPN12 (Protein Tyrosine Phosphatsen
Receptor Type 12) or CUL3 (CUlin 3) consistenty induced YAP1/TAZ activity in all assays tested: PTPN12 interference suggests a conserved function with PTPN14, a known YAP1/TAZ inhibitory protein PTPN12 interference suggests a conserved
that sequesters YPP1/TAZ in the cytoplasm.
CUL3 is the core scaftolding protein of the CUL3-RING ubiquitin ligase complex which targets proteins for
degradation by the proteasome. degradation by the proteasome.

\qquad

CONCLUSIONS
A pooled whole genome CRISPR/Cas9 screen identified previously known as well as novel positive and negative regulators of YAP1/TAZ in MDA.
\Rightarrow MB-231 breast cancer cells .

